首页 > 科技
EEE-6512EEL-4930 Image Processing and Computer Vision Spring 2024 Homework #7 (Optional)
March 21, 2024
Due: April 22, 2024, 11:59 PM
This assignment should be completed individually by the student. Proper citation should be provided for any references used.
Please read the requirements carefully. Solutions that do not follow the provided specifications will not receive credit. You are free to use any built-in/toolbox functions within MATLAB to accomplish this task, except functions from the deep learning toolbox. Data and background were taken from the Sign Language MNIST Kaggle dataset page [1].
Background: The original MNIST image dataset of handwritten digits is a popular benchmark for image-based artificial intelligence methods, but researchers have renewed efforts to update it and develop drop-in replacements that are more challenging for computer vision and original for real-world applications. American Sign Language (ASL) MNIST is one such dataset, consisting of images of hand gestures that represent a multi-class problem with 24 classes of letters (excluding J and Z, which require motion). This has applications in live ASL/spoken word translation. See provided asl_reference.png for the ASL letters. For more information, please see [1].
Data: The dataset format is patterned to match closely with the classic MNIST. Data is stored in CSV format with:
1. a label (0-25) as a one-to-one map for each alphabetic letter A (and no cases for 9=J or 25=Z because of gesture motions)
2. pixel1, pixel2, .. pixel784 which represent a single image. Data was preprocessed by cropping to hands-only, gray-scaling to uint8 bit depth, and resizing to a 28x28 pixel image.
3. For this assignment, we are only concerned with the letters A-D, inclusive. Please use the provided asl_mnist.csv.
Challenge: Write a function, myASLTranslate, which:
• accepts a single 28x28 uint8 greyscale image and returns a single character, either “A”,
“B”, “C”, or “D”.
• You must:
o Use at least one filter on the grayscale image
o Use at least one morphological image processing operation
o Use at least one region feature from section Chapter 12
o Include in your report the accuracy of your function on all data in asl_mnist.csv
• Note: Your function will be tested on 25 randomly sampled images taken from the provided asl_mnist.csv. Code must achieve at least 80% accuracy on the sampled dataset to receive credit.
To receive full credit, you should submit two files. 1.) A document containing an explanation of how your code works, (.DOC, .DOCX, or PDF file) 2.) An M-file containing commented MATLAB code for the program myASLTranslate. Students should ensure that their M-files execute without errors to avoid receiving point deductions.
References
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- 搜索
-
- 04-10重塑企业生产力!2025金智维企业级智能体暨AI+新品发布会成功举办,引领人机协同新范式
- 04-10数坤科技:引领医疗大模型全能时代
- 04-10“惊蛰号”——全球首艘内河全航程自动驾驶试验船顺利下水
- 04-10喜报丨易智瑞公司通过上海数据交易所数商资格认证
- 04-10打造酒业全面预算管理最佳实践,企云方助力金徽酒打造“数智化”全面预算平台
- 04-09安世亚太电力设备级数字孪生与AI虚拟传感解决方案
- 04-09铼赛智能Edge mini斩获2025法国设计大奖 | 重新定义数字化齿科美学
- 04-09口腔数字化大变革,这场行业大会带你率先把握未来机遇!
- 04-082025 年 Control4 中国区客户启动会在杭州成功举办,开启高端智能家居新征程
- 04-08多模态能力的进化,是AI眼镜成为生活必需品的关键