首页 > 科技
Practical Exercise - Task 1
MFCCs
Speech Technology - COM4511/6511
12th March 2021
1 Introduction
The aim of this task is to learn how to use Python for speech processing. There are several online Python tutorials,
and particularly on numpy and how to use it for signal processing. In this task you will implement a Python
program to convert a speech signal to Mel Frequency Cepstral Coefficients (MFCCs).
2 Infrastructure
A speech audio file from the TIMIT corpus, a Python helper script and example output are provided. These can be
found on MOLE in the folder named task1. It is also available for download at https://www.dcs.shef.ac.uk/∼th/campus_only3 Task
To help you start the task, the provided Python script contains all the necessary steps and a few utility functions
for this task. You are asked to fill in the missing parts indicated by ####.
1. From the link above, download the audio file “SA1.wav” and the Python script “ task1_compute_mfcc.py ”
2. Take a look at the script and find out which parts need to be implemented
3. Convert the complete audio file into a sequence of MFCC vectors using the following baseline configuration.
(a) A pre-emphasis filter with coefficient 0.97
(b) 10ms frame step, 25ms frame length (Hamming window)
(c) 26 Mel-filters
(d) 12 cepstral coefficients (C1-C12, omitting C0)
(e) 22-order liftering.
(f) Cepstral mean and variance normalisation (optional)
(g) Plot different coefficients and consider the implications of what you see
(h) Adopt any good coding style with meaningful comments. Use functions when possible.
You can (and should) use NumPy and SciPy for basic numerical computing and the FFT/DCT computation, but
not any other packages (i.e. the helper script has provided all the necessary imports). If you are not sure, just raise
your hand and ask.
1
4 Assessment:
Note that for any module assignment full marks will only be obtained for outstanding performance that goes
well beyond the questions asked. The marks allocated for each assignment are 20%. The marks will be assigned according the following general criteria - for every assignment handed in:
1. Fulfilling the basic requirements (5%)
Full marks will be given to fulfilling the work as described, in source code and results given.
2. Submitting high quality documentation (5%)
Full marks will be given to a write-up that is at the highest standard of technical writing and illustration.
3. Showing good reasoning (5%)
Full marks will be given if the experiments and the outcomes are explained to the best standard.
4. Going beyond what was asked (5%)
Full marks will be given for interesting ideas on how to extend work that are well motivated and described.
In order to report this task as complete 3 elements have to be submitted, in gzup form. The file name should have
the following format:
<lastname>_<firstname>_task1.gz
1. The MFCC encoded reference audio file in text format.
Each line contains one MFCC vector, the values are separated by single space.
2. A compiled Latex document (pdf) that contains 4 plots (matplotlib) of the MFFCs in the following configurations (modification to the baseline) and detailed comments on the variation to the baseline configuration
as outlined above. Also briefly comment on the reasons for the effects.
(a) No Hamming window
(b) 40 MFCCs
(c) 80 Filterbanks, 40 MFCCs
(d) No Pre-emphasis.
3. The completed source code for the baseline configuration as outlined in 3.
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- 搜索
-
- 04-10重塑企业生产力!2025金智维企业级智能体暨AI+新品发布会成功举办,引领人机协同新范式
- 04-10数坤科技:引领医疗大模型全能时代
- 04-10“惊蛰号”——全球首艘内河全航程自动驾驶试验船顺利下水
- 04-10喜报丨易智瑞公司通过上海数据交易所数商资格认证
- 04-10打造酒业全面预算管理最佳实践,企云方助力金徽酒打造“数智化”全面预算平台
- 04-09安世亚太电力设备级数字孪生与AI虚拟传感解决方案
- 04-09铼赛智能Edge mini斩获2025法国设计大奖 | 重新定义数字化齿科美学
- 04-09口腔数字化大变革,这场行业大会带你率先把握未来机遇!
- 04-082025 年 Control4 中国区客户启动会在杭州成功举办,开启高端智能家居新征程
- 04-08多模态能力的进化,是AI眼镜成为生活必需品的关键